50 research outputs found

    Acute respiratory distress syndrome : prevention and early recognition

    Get PDF
    Acute respiratory distress syndrome (ARDS) is common in critically ill patients admitted to intensive care units (ICU). ARDS results in increased use of critical care resources and healthcare costs, yet the overall mortality associated with these conditions remains high. Research focusing on preventing ARDS and identifying patients at risk of developing ARDS is necessary to develop strategies to alter the clinical course and progression of the disease. To date, few strategies have shown clear benefits. One of the most important obstacles to preventive interventions is the difficulty of identifying patients likely to develop ARDS. Identifying patients at risk and implementing prevention strategies in this group are key factors in preventing ARDS. This review will discuss early identification of at-risk patients and the current prevention strategies

    Patient-ventilator asynchronies during mechanical ventilation: current knowledge and research priorities

    Get PDF
    Background: Mechanical ventilation is common in critically ill patients. This life-saving treatment can cause complications and is also associated with long-term sequelae. Patient-ventilator asynchronies are frequent but underdiagnosed, and they have been associated with worse outcomes.Main body: Asynchronies occur when ventilator assistance does not match the patient's demand. Ventilatory overassistance or underassistance translates to different types of asynchronies with different effects on patients. Underassistance can result in an excessive load on respiratory muscles, air hunger, or lung injury due to excessive tidal volumes. Overassistance can result in lower patient inspiratory drive and can lead to reverse triggering, which can also worsen lung injury. Identifying the type of asynchrony and its causes is crucial for effective treatment.Mechanical ventilation and asynchronies can affect hemodynamics. An increase in intrathoracic pressure during ventilation modifies ventricular preload and afterload of ventricles, thereby affecting cardiac output and hemodynamic status. Ineffective efforts can decrease intrathoracic pressure, but double cycling can increase it. Thus, asynchronies can lower the predictive accuracy of some hemodynamic parameters of fluid responsiveness.New research is also exploring the psychological effects of asynchronies. Anxiety and depression are common in survivors of critical illness long after discharge. Patients on mechanical ventilation feel anxiety, fear, agony, and insecurity, which can worsen in the presence of asynchronies. Asynchronies have been associated with worse overall prognosis, but the direct causal relation between poor patient-ventilator interaction and worse outcomes has yet to be clearly demonstrated.Critical care patients generate huge volumes of data that are vastly underexploited. New monitoring systems can analyze waveforms together with other inputs, helping us to detect, analyze, and even predict asynchronies. Big data approaches promise to help us understand asynchronies better and improve their diagnosis and management.Conclusions: Although our understanding of asynchronies has increased in recent years, many questions remain to be answered. Evolving concepts in asynchronies, lung crosstalk with other organs, and the difficulties of data management make more efforts necessary in this field

    Virtual Reality-Based Early Neurocognitive Stimulation in Critically Ill Patients : A Pilot Randomized Clinical Trial

    Get PDF
    This study focuses on the application of a non-immersive virtual reality (VR)-based neurocognitive intervention in critically ill patients. Our aim was to assess the feasibility of direct outcome measures to detect the impact of this digital therapy on patients' cognitive and emotional outcomes. Seventy-two mechanically ventilated adult patients were randomly assigned to the "treatment as usual" (TAU, n = 38) or the "early neurocognitive stimulation" (ENRIC, n = 34) groups. All patients received standard intensive care unit (ICU) care. Patients in the ENRIC group also received adjuvant neurocognitive stimulation during the ICU stay. Outcome measures were a full neuropsychological battery and two mental health questionnaires. A total of 42 patients (21 ENRIC) completed assessment one month after ICU discharge, and 24 (10 ENRIC) one year later. At one-month follow-up, ENRIC patients had better working memory scores (p = 0.009, d = 0.363) and showed up to 50% less non-specific anxiety (11.8% vs. 21.1%) and depression (5.9% vs. 10.5%) than TAU patients. A general linear model of repeated measures reported a main effect of group, but not of time or group-time interaction, on working memory, with ENRIC patients outperforming TAU patients (p = 0.008, η 2 = 0.282). Our results suggest that non-immersive VR-based neurocognitive stimulation may help improve short-term working memory outcomes in survivors of critical illness. Moreover, this advantage could be maintained in the long term. An efficacy trial in a larger sample of participants is feasible and must be conducted

    Patient-ventilator asynchronies during mechanical ventilation : current knowledge and research priorities

    Get PDF
    Mechanical ventilation is common in critically ill patients. This life-saving treatment can cause complications and is also associated with long-term sequelae. Patient-ventilator asynchronies are frequent but underdiagnosed, and they have been associated with worse outcomes. Asynchronies occur when ventilator assistance does not match the patient's demand. Ventilatory overassistance or underassistance translates to different types of asynchronies with different effects on patients. Underassistance can result in an excessive load on respiratory muscles, air hunger, or lung injury due to excessive tidal volumes. Overassistance can result in lower patient inspiratory drive and can lead to reverse triggering, which can also worsen lung injury. Identifying the type of asynchrony and its causes is crucial for effective treatment. Mechanical ventilation and asynchronies can affect hemodynamics. An increase in intrathoracic pressure during ventilation modifies ventricular preload and afterload of ventricles, thereby affecting cardiac output and hemodynamic status. Ineffective efforts can decrease intrathoracic pressure, but double cycling can increase it. Thus, asynchronies can lower the predictive accuracy of some hemodynamic parameters of fluid responsiveness. New research is also exploring the psychological effects of asynchronies. Anxiety and depression are common in survivors of critical illness long after discharge. Patients on mechanical ventilation feel anxiety, fear, agony, and insecurity, which can worsen in the presence of asynchronies. Asynchronies have been associated with worse overall prognosis, but the direct causal relation between poor patient-ventilator interaction and worse outcomes has yet to be clearly demonstrated. Critical care patients generate huge volumes of data that are vastly underexploited. New monitoring systems can analyze waveforms together with other inputs, helping us to detect, analyze, and even predict asynchronies. Big data approaches promise to help us understand asynchronies better and improve their diagnosis and management. Although our understanding of asynchronies has increased in recent years, many questions remain to be answered. Evolving concepts in asynchronies, lung crosstalk with other organs, and the difficulties of data management make more efforts necessary in this field

    Development and validation of a sample entropy-based method to identify complex patient-ventilator interactions during mechanical ventilation

    Get PDF
    Patient-ventilator asynchronies can be detected by close monitoring of ventilator screens by clinicians or through automated algorithms. However, detecting complex patient-ventilator interactions (CP-VI), consisting of changes in the respiratory rate and/or clusters of asynchronies, is a challenge. Sample Entropy (SE) of airway flow (SE-Flow) and airway pressure (SE-Paw) waveforms obtained from 27 critically ill patients was used to develop and validate an automated algorithm for detecting CP-VI. The algorithm’s performance was compared versus the gold standard (the ventilator’s waveform recordings for CP-VI were scored visually by three experts; Fleiss’ kappa = 0.90 (0.87–0.93)). A repeated holdout cross-validation procedure using the Matthews correlation coefficient (MCC) as a measure of effectiveness was used for optimization of different combinations of SE settings (embedding dimension, m, and tolerance value, r), derived SE features (mean and maximum values), and the thresholds of change (Th) from patient’s own baseline SE value. The most accurate results were obtained using the maximum values of SE-Flow (m = 2, r = 0.2, Th = 25%) and SE-Paw (m = 4, r = 0.2, Th = 30%) which report MCCs of 0.85 (0.78–0.86) and 0.78 (0.78–0.85), and accuracies of 0.93 (0.89–0.93) and 0.89 (0.89–0.93), respectively. This approach promises an improvement in the accurate detection of CP-VI, and future study of their clinical implications.This work was funded by projects PI16/01606, integrated in the Plan Nacional de R+D+I and co-funded by the ISCIII- Subdirección General de Evaluación y el Fondo Europeo de Desarrollo Regional (FEDER). RTC-2017-6193-1 (AEI/FEDER UE). CIBER Enfermedades Respiratorias, and Fundació Parc Taulí

    Cardiopulmonary coupling indices to assess weaning readiness from mechanical ventilation

    Get PDF
    The ideal moment to withdraw respiratory supply of patients under Mechanical Ventilation at Intensive Care Units (ICU), is not easy to be determined for clinicians. Although the Spontaneous Breathing Trial (SBT) provides a measure of the patients’ readiness, there is still around 15–20% of predictive failure rate. This work is a proof of concept focused on adding new value to the prediction of the weaning outcome. Heart Rate Variability (HRV) and Cardiopulmonary Coupling (CPC) methods are evaluated as new complementary estimates to assess weaning readiness. The CPC is related to how the mechanisms regulating respiration and cardiac pumping are working simultaneously, and it is defined from HRV in combination with respiratory information. Three different techniques are used to estimate the CPC, including Time-Frequency Coherence, Dynamic Mutual Information and Orthogonal Subspace Projections. The cohort study includes 22 patients in pressure support ventilation, ready to undergo the SBT, analysed in the 24 h previous to the SBT. Of these, 13 had a successful weaning and 9 failed the SBT or needed reintubation –being both considered as failed weaning. Results illustrate that traditional variables such as heart rate, respiratory frequency, and the parameters derived from HRV do not differ in patients with successful or failed weaning. Results revealed that HRV parameters can vary considerably depending on the time at which they are measured. This fact could be attributed to circadian rhythms, having a strong influence on HRV values. On the contrary, significant statistical differences are found in the proposed CPC parameters when comparing the values of the two groups, and throughout the whole recordings. In addition, differences are greater at night, probably because patients with failed weaning might be experiencing more respiratory episodes, e.g. apneas during the night, which is directly related to a reduced respiratory sinus arrhythmia. Therefore, results suggest that the traditional measures could be used in combination with the proposed CPC biomarkers to improve weaning readiness

    Effect of a low versus intermediate tidal volume strategy on pulmonary complications in patients at risk of acute respiratory distress syndrome—a randomized clinical trial

    Get PDF
    IntroductionThere is no consensus on whether invasive ventilation should use low tidal volumes (VT) to prevent lung complications in patients at risk of acute respiratory distress syndrome (ARDS). The purpose of this study is to determine if a low VT strategy is more effective than an intermediate VT strategy in preventing pulmonary complications.MethodsA randomized clinical trial was conducted in invasively ventilated patients with a lung injury prediction score (LIPS) of >4 performed in the intensive care units of 10 hospitals in Spain and one in the United States of America (USA) from 3 November 2014 to 30 August 2016. Patients were randomized to invasive ventilation using low VT (≤ 6 mL/kg predicted body weight, PBW) (N = 50) or intermediate VT (> 8 mL/kg PBW) (N = 48). The primary endpoint was the development of ARDS during the first 7 days after the initiation of invasive ventilation. Secondary endpoints included the development of pneumonia and severe atelectases; the length of intensive care unit (ICU) and hospital stay; and ICU, hospital, 28– and 90–day mortality.ResultsIn total, 98 patients [67.3% male], with a median age of 65.5 years [interquartile range 55–73], were enrolled until the study was prematurely stopped because of slow recruitment and loss of equipoise caused by recent study reports. On day 7, five (11.9%) patients in the low VT group and four (9.1%) patients in the intermediate VT group had developed ARDS (risk ratio, 1.16 [95% CI, 0.62–2.17]; p = 0.735). The incidence of pneumonia and severe atelectasis was also not different between the two groups. The use of a low VT strategy did neither affect the length of ICU and hospital stay nor mortality rates.ConclusionsIn patients at risk for ARDS, a low VT strategy did not result in a lower incidence of ARDS than an intermediate VT strategy.Clinical Trial Registration: ClinicalTrials.gov, identifier NCT02070666

    Objective and subjective cognition in survivors of COVID-19 one year after ICU discharge : the role of demographic, clinical, and emotional factors

    Get PDF
    Altres ajuts: This research was also supported by CIBER -Consorcio Centro de Investigación Biomédica en Red- CB06/06/1097, Instituto de Salud Carlos III, Ministerio de Ciencia e Innovación and Unión Europea - European Regional Development Fund.Intensive Care Unit (ICU) COVID-19 survivors may present long-term cognitive and emotional difficulties after hospital discharge. This study aims to characterize the neuropsychological dysfunction of COVID-19 survivors 12 months after ICU discharge, and to study whether the use of a measure of perceived cognitive deficit allows the detection of objective cognitive impairment. We also explore the relationship between demographic, clinical and emotional factors, and both objective and subjective cognitive deficits. Critically ill COVID-19 survivors from two medical ICUs underwent cognitive and emotional assessment one year after discharge. The perception of cognitive deficit and emotional state was screened through self-rated questionnaires (Perceived Deficits Questionnaire, Hospital Anxiety and Depression Scale and Davidson Trauma Scale), and a comprehensive neuropsychological evaluation was carried out. Demographic and clinical data from ICU admission were collected retrospectively. Out of eighty participants included in the final analysis, 31.3% were women, 61.3% received mechanical ventilation and the median age of patients was 60.73 years. Objective cognitive impairment was observed in 30% of COVID-19 survivors. The worst performance was detected in executive functions, processing speed and recognition memory. Almost one in three patients manifested cognitive complaints, and 22.5%, 26.3% and 27.5% reported anxiety, depression and post-traumatic stress disorder (PTSD) symptoms, respectively. No significant differences were found in the perception of cognitive deficit between patients with and without objective cognitive impairment. Gender and PTSD symptomatology were significantly associated with perceived cognitive deficit, and cognitive reserve with objective cognitive impairment. One-third of COVID-19 survivors suffered objective cognitive impairment with a frontal-subcortical dysfunction 12 months after ICU discharge. Emotional disturbances and perceived cognitive deficits were common. Female gender and PTSD symptoms emerged as predictive factors for perceiving worse cognitive performance. Cognitive reserve emerged as a protective factor for objective cognitive functioning. Trial registration : ClinicalTrials.gov Identifier: NCT04422444; June 9, 2021. The online version contains supplementary material available at 10.1186/s13054-023-04478-7

    Plan de contingencia para los servicios de medicina intensiva frente a la pandemia COVID-19

    Get PDF
    In January 2020, the Chinese authorities identified a new virus of the Coronaviridae family as the cause of several cases of pneumonia of unknown aetiology. The outbreak was initially confined to Wuhan City, but then spread outside Chinese borders. On 31 January 2020, the first case was declared in Spain. On 11 March 2020, The World Health Organization (WHO) declared the coronavirus outbreak a pandemic. On 16 March 2020, there were 139 countries affected. In this situation, the Scientific Societies SEMICYUC and SEEIUC, have decided to draw up this Contingency Plan to guide the response of the Intensive Care Services. The objectives of this plan are to estimate the magnitude of the problem and identify the necessary human and material resources. This is to provide the Spanish Intensive Medicine Services with a tool to programme optimal response strategies

    Clinical consensus recommendations regarding non-invasive respiratory support in the adult patient with acute respiratory failure secondary to SARS-CoV-2 infection

    Get PDF
    La enfermedad por coronavirus 2019 (COVID-19) es una infección del tracto respiratorio causada por un nuevo coronavirus emergente que se reconoció por primera vez en Wuhan, China, en diciembre de 2019. Actualmente la Organización Mundial de la Salud (OMS) ha definido la infección como pandemia y existe una situación de emergencia sanitaria y social para el manejo de esta nueva infección. Mientras que la mayoría de las personas con COVID-19 desarrollan solo una enfermedad leve o no complicada, aproximadamente el 14% desarrollan una enfermedad grave que requiere hospitalización y oxígeno, y el 5% pueden requerir ingreso en una unidad de cuidados intensivos. En casos severos, COVID-19 puede complicarse por el síndrome de dificultad respiratoria aguda (SDRA), sepsis y shock séptico y fracaso multiorgánico. Este documento de consenso se ha preparado sobre directrices basadas en evidencia desarrolladas por un panel multidisciplinario de profesionales médicos de cuatro sociedades científicas españolas (Sociedad Española de Medicina Intensiva y Unidades Coronarias [SEMICYUC], Sociedad Española de Neumología y Cirugía Torácica [SEPAR], Sociedad Española de Urgencias y Emergencias [SEMES], Sociedad Española de Anestesiología, Reanimación y Terapéutica del Dolor [SEDAR]) con experiencia en el manejo clínico de pacientes con COVID-19 y otras infecciones virales, incluido el SARS, así como en sepsis y SDRA. El documento proporciona recomendaciones clínicas para el soporte respiratorio no invasivo (ventilación no invasiva, oxigenoterapia de alto flujo con cánula nasal) en cualquier paciente con presentación sospechada o confirmada de COVID-19 con insuficiencia respiratoria aguda. Esta guía de consenso debe servir como base para una atención optimizada y garantizar la mejor posibilidad de supervivencia, así como permitir una comparación fiable de las futuras intervenciones terapéuticas de investigación que formen parte de futuros estudios observacionales o de ensayos clínicos.Coronavirus disease 2019 (COVID-19) is a respiratory tract infection caused by a newly emergent coronavirus, that was first recognized in Wuhan, China, in December 2019. Currently, the World Health Organization (WHO) has defined the infection as a global pandemic and there is a health and social emergency for the management of this new infection. While most people with COVID-19 develop only mild or uncomplicated illness, approximately 14% develop severe disease that requires hospitalization and oxygen support, and 5% require admission to an intensive care unit. In severe cases, COVID-19 can be complicated by the acute respiratory distress syndrome (ARDS), sepsis and septic shock, and multiorgan failure. This consensus document has been prepared on evidence-informed guidelines developed by a multidisciplinary panel of health care providers from four Spanish scientific societies (Spanish Society of Intensive Care Medicine [SEMICYUC], Spanish Society of Pulmonologists [SEPAR], Spanish Society of Emergency [SEMES], Spanish Society of Anesthesiology, Reanimation, and Pain [SEDAR]) with experience in the clinical management of patients with COVID-19 and other viral infections, including SARS, as well as sepsis and ARDS. The document provides clinical recommendations for the noninvasive respiratory support (noninvasive ventilation, high flow oxygen therapy with nasal cannula) in any patient with suspected or confirmed presentation of COVID-19 with acute respiratory failure. This consensus guidance should serve as a foundation for optimized supportive care to ensure the best possible chance for survival and to allow for reliable comparison of investigational therapeutic interventions as part of randomized controlled trials
    corecore